import numpy as np
import pandas as pd
import scipy
import scipy.io as spio
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
from os import listdir
from os.path import isfile, join
# Load the neuron A control genotype data into a dataframe
dfAc = pd.read_excel('AwithAchrim_ctrl1_20171013.xlsx',sheet_name=0, header=1)
dfAc=dfAc[0:100]
dfAc[0:3]
# Get means
dfAcMean = pd.DataFrame({'AcMean':dfAc.mean(axis=1)})
dfAcMean[0:3]
# Load the neuron B control genotype data into a dataframe
dfBc = pd.read_excel('BwithAchrim_ctrl1_20171013.xlsx',sheet_name=0, header=1)
dfBc=dfBc[0:100]
# Get means
dfBcMean = pd.DataFrame({'BcMean':dfBc.mean(axis=1)})
dfBcMean[0:3]
# Load the cell B experimental (light-sensitive) genotype data
dfBe = pd.read_excel('BwithAchrim_expt_20171013.xlsx',sheet_name=0, header=1)
dfBe=dfBe[0:100]
dfBe[0:1]
# Load the cell A experimental (light-sensitive) genotype data
dfAe = pd.read_excel('AwithAchrim_expt_20171013.xlsx',sheet_name=0, header=1)
dfAe=dfAe[0:100]
dfAe[0:1]
# Get means
dfAeMean = pd.DataFrame({'AeMean':dfAe.mean(axis=1)})
dfAeMean[0:3]
# Fly by fly data
frames = [dfBc, dfAc, dfBe, dfAe]
dfAll = pd.concat(frames,axis=1)
dfAll[0:1]
# Means for each condition
framesMeans = [dfBcMean, dfBeMean, dfAcMean, dfAeMean]
dfMeans = pd.concat(framesMeans,axis=1)
dfMeans[0:3]
# Fly by fly
corrMat = dfAll.corr(method='spearman')
# Means only
corrMatMeans = dfMeans.corr(method='spearman')
mask = np.zeros_like(corrMatMeans)
mask[np.triu_indices_from(mask)] = True
with sns.axes_style("white"):
ax = sns.heatmap(corrMatMeans, mask=mask, square=True, annot=True).set_title('Correlations Between a Pair of Cells')